Noradrenergically mediated plasticity in a human attentional neuronal network.
نویسندگان
چکیده
Noradrenaline is implicated in the modulation of attention and arousal, but the neuroanatomical basis of this effect in humans is unknown. A previous functional neuroimaging study failed to find clear effects of clonidine (alpha2 adrenoceptor agonist) on activity of brain regions implicated in attention. Therefore, we now investigate whether clonidine affects the functional integration of a neuroanatomical attentional network, by modulating connectivity between brain regions rather than activity within discrete regions. Following infusion of either clonidine or placebo, positron emission tomography measurements of brain activity were collected in 13 normal subjects while they were either resting or performing an attentional task. Effective connectivity analysis showed that during rest, clonidine decreased the functional strength of connections both from frontal cortex to thalamus and in pathways to and from visual cortex. Conversely, during the attentional task, functional integration generally increased, with changes being centered on parietal cortex (increased connectivity from locus coeruleus to parietal cortex and from parietal cortex to thalamus and frontal cortex). A drug-induced increase in the modulatory effects of frontal cortex on projections from locus coeruleus to parietal cortex was also observed. Collectively, these results highlight cognitively dissociable effects of clonidine on interactions among functionally integrated brain regions and implicate the noradrenergic system in mediating the functional integration of attentional brain systems. The context-sensitive nature of the changes are consistent with observations that noradrenergic drugs have differential effects on brain processes depending on subjects' underlying arousal levels. More generally, the results illustrate the dynamic plasticity of cognitive brain systems following neurochemical challenge.
منابع مشابه
Faster Perceptual Learning through Excitotoxic Neurodegeneration
Glutamatergic neural transmission is involved in both neural plasticity and neurodegeneration. This combination of roles could result in ambivalent effects in which excitotoxic neurodegeneration augments neural plasticity in parallel. Neural plasticity can be induced by exposure-based learning (EBL) that resembles timing properties of long-term potentiation (LTP) protocols (i.e., LTP-like learn...
متن کاملHigh neuronal/astroglial differentiation plasticity of adult rat hippocampal neural stem/progenitor cells in response to the effects of embryonic and adult cerebrospinal fluids
Hippocampal neural stem/progenitor cells (hipp-NS/PCs) of the adult mammalian brain are important sources of neuronal and gial cell production. In this study, the main goal is to investigate the plasticity of these cells in neuronal/astroglial differentiations. To this end, the differentiation of the hipp-NS/PCs isolated from 3-month-old Wistar rats was investigated in response to the embryonic...
متن کاملPlasticity of visual attention in Isha yoga meditation practitioners before and after a 3-month retreat
Meditation has lately received considerable interest from cognitive neuroscience. Studies suggest that daily meditation leads to long lasting attentional and neuronal plasticity. We present changes related to the attentional systems before and after a 3 month intensive meditation retreat. We used three behavioral psychophysical tests - a Stroop task, an attentional blink task, and a global-loca...
متن کاملThe Role of Adrenergic Receptors on Neural Excitability and Synaptic Plasticity: A Narrative Review
Adrenergic receptors have an important role in neural excitability and synaptic plasticity. Despite a lot of studies on these receptors, their exact role in brain disorders accompanied with hyperexcitability has not been determined. There are also controversies on their role in synaptic plasticity. In this review article, the important studies done in this regard have been reviewed to achieve a...
متن کاملMorphine Consumption During Lactation Impairs Short-Term Neuronal Plasticity in Rat Offspring CA1 Neurons
Background: Facing environmental factors during early postnatal life, directly or indirectly via mother-infant relationships, profoundly affects the structure and function of the mammals’ Central Nervous System (CNS). Objectives: This study aimed to evaluate the effect of morphine consumption during the lactation period on short-term synaptic plasticity of the hippocampal Cornu Ammonis 1 (C...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 10 6 شماره
صفحات -
تاریخ انتشار 1999